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On the stability of multiple helical vortices
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The classical problem of linear stability of a regular N -gon of point vortices to infini-
tesimal space displacements from an equilibrium of the vortex configuration is gener-
alized to the one for N helical vortices (couple, triplet, etc., N > 1) for the first time.
As a consequence of this consideration, the analytical form for the stability boundaries
has been obtained. This solution allows an efficient analysis to be made of the existence
of stable helical vortex arrays, which were repeatedly observed in practice.

Such a stability problem was earlier considered in theory, but only for the case of a
plane polygonal array of N point vortices. As for helical vortices, owing to their com-
plexity, intensive study has been mainly on the self-induced motion of the vortex.

The algebraic representation for the velocity of motion of the N helical vortex array
was originally obtained as an additional intermediate result. The new formula allows
accurate calculations to be made within the whole range of helical pitch variations
and has a simpler form than the known asymptotic expressions.

Solution of these two classical problems of vortex dynamics has significance both
for theoretic and applied mechanics, as well as for many other areas of natural science,
where the rotor (vortex) concept is the basic one.

1. Introduction
The study of stability of some equilibrium vortex configurations is of special interest.

For instance, the system of N longitudinal vortex structures, situated uniformly on
a cylindrical surface with an identical angle displacement to the azimuth direction is
one such problem. Owing to the complexity of the problem, the simpler problem of
stability of stationary rotation of the point vortices (or rectilinear vortex filaments)
with equal intensity Γ , situated in the vertices of a regular N -gon (figure 1) was first
formulated by Thomson (Lord Kelvin) partially in view of his vortex atom theory. He
drew attention to the similarity of the current problem and the problem of equilibrium
for a system of uniform magnets floating in an external magnetic field (Thomson
1878). Obviously, in the state of equilibrium, the vortex polygonal array rotates,
keeping its shape invariable with the angular velocity Ω = Γ (N − 1)/4πa2, where a

is the radius of a circumference rounding the vortices. Later on, J. J. Thomson (who
discovered the electron) won the Adams prize for proof of the linear stability of
a vortex polygonal array for N < 7 (Thomson 1883). The complete analysis of the
stability for point vortices was carried out by Havelock (1931), who determined
instability for N > 7 and considered N = 7 as a special case, for which linear analysis
did not allow conclusions to be made on the stability of the system. He examined
even more complex problems, taking into account, for example, global rotation with
arbitrary tangentional velocity (not necessarily vortex free) and the presence of the
second circular vortex array. The review of these and further work can be found in
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Figure 1. Scheme of a circular equilibrium array of N rectilinear vortices or polygonal array
of N point vortices.
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Figure 2. Scheme of a circular equilibrium array of N helical vortices.

Aref et al. (1988). Nonlinear stability analysis for the case of N =7 was carried out
by Kurakin & Yudovich (2002).

These results obtained for particular cases, such as point or rectilinear vortices,
essentially differ from practice, where vortices are usually turned into helical spirals
(figure 2). Indeed, a stable couple of helical vortices was observed many times in
various vortex flows (such as, tornado cores; after vortex breakdown over a delta
wing, and in tubes, in vortex chambers of various geometries and for various uses;
and as a model of the vortex couplings in turbulent flows). Triplets of helical vortices
in the flows is a far less frequent case, while configuration of four vortex structures
is an even more unstable phenomenon. In the preliminary experiments carried out in
a rectangular vortex chamber, described by Alekseenko et al. (1999), we were able
to observe four vortices within a very short time interval. Then, the structure was
destroyed. In other words, real vortex configurations represent much more unstable
objects than those predicted by point vortex models.
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Another situation appears behind propellers, wind turbines, etc. when the vorticity is
concentrated in N helical tip vortices and hub vortices of the negative sum circulation
lying along the system axis. This (N + 1)-vortex system is the simpler wake description
proposed in the basic previous investigations (see, e.g. Joukowski 1912). Again, the
problem of stability of the equilibrium circular configuration of the (N + 1)-vortex
system to infinitesimal space displacements was theoretically studied only for point
vortices. In contrast to stability of N -point vortices without hub vortex for N < 7, the
(N +1)-point vortex system with hub vortex is absolutely unstable (see e.g. Morikawa
& Swenson 1971). This result, obtained in the simplest plane case, is at variance
with the numerous visualizations of wind-turbine and propeller wakes too where the
helical tip vortices with small pitch usually exist with negligible changing in a long
trail behind the turbine. The stability problem of the (N + 1) helical vortices has been
studied by Okulov & Sorensen (2004) and the task is not considered here.

However, although stability of equilibrium configurations of N helical vortices is an
important issue for vortex structure descriptions in tornado cores, after vortex break-
down, in vortex chambers, etc., the problem has not yet been considered analytically.
So far, only part of the problem has been studied in detail – the problem of finding
the self-induced velocity of motion for a single helical vortex in unbounded space;
but, even this problem is complicated enough. The most significant achievements in
this field, made by Kelvin (1880), Levy & Forsdyke (1928), Moore & Saffman (1972),
Widnall (1972), etc., were reviewed by Ricca (1994). Two later papers were published
by Kuibin & Okulov (1998) and Boersma & Wood (1999); and in addition to this
Wood & Boersma (2001) considered motion of the N vortex system integrally. Finally,
to note the contributions made by Russian scientists in solving this problem we
must mention the paper published by Joukowski (1912). Notice also, that some of
the investigations, concerning the helical vortices, are devoted to linear stability to
infinitesimal sinusoidal disturbance of the helix form. Widnall (1972) describes the
three main instability mode shapes as a ‘short wave’, a ‘low wavenumber’ and a ‘mutual
inductance’ mode for small helical pitch. The non-local influence of the entire
perturbed filament on the linear stability of a helix vortex is explored by Fukumoto &
Miyazaki (1991) with the help of the cutoff method valid to the second order, which
extends the first-order scheme developed by Widnall (1972). Gupta & Loewy (1974)
and Bhagwat & Leishman (2000) extend the analysis for multiple helical vortices,
though the vortex stability to sinusoidal perturbations of the helix form is not touched
upon here.

The main goal of the current work is to find the conditions for linear stability to
infinitesimal space displacements of equilibrium vortex configuration Λ, comprised of
N identical slender helical vortices with circulation Γ (figure 2) and with the common
pitch h or l = h/2π (we introduce further dimensionless pitch τ = l/a). The vortex
axes of the system Λ are given by helical lines

Xn = (a cos(θ + nδ); a sin(θ + nδ); aτ (θ + nδ)), (1.1)

lying on a cylinder with radius a. The vortex central lines are azimuthally displaced
by the angle δ = 2π/N . The vortices have circular cores with the same radius (referred
to a) σ � 1. The vortex cores are a superposition of the helical vortex filaments
which are collinear to central helical lines (1.1) and their vorticity is (instantaneously)
uniformly distributed across the core cross-section (see e.g. Ricca 1994). Besides, the
vortex system Λ under consideration should meet additional conditions: 2σ < τ and
N < π/σ . Such a non-perturbed vortex system rotates and moves uniformly along the
axis of a cylinder. Incidentally, determination of the moving velocity of the circular
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equilibrium array of helical vortices still cannot be considered as a solved problem.
Indeed, Wood & Boersma (2001) have obtained the integral representation for
binormal velocity of the system motion; however, they wrote down a closed analytical
form of the solution only for velocity asymptotic expansions at large and small values
of dimensionless pitch, and only for some vortices in the system (N = 2, 3 and 4).

In contrast to rectilinear filaments (or point vortices) where the induced velocity has
a simple solution in the form of a pole, the Biot-Savart law for helical filaments cannot
be integrated in a closed form. Only asymptotic solutions can be written analytically,
but they cannot provide high accuracy within the whole range of variation of helical
vortex pitch, when calculating the velocity field necessary to solve the stability problem
(see for instance, Ricca 1994; Boersma & Wood 1999). Another form of the solution
based on infinite series from products of modified cylindrical functions (Kapteyn
series) was found by Hardin (1982) for a helical vortex filament in infinite fluid, and
generalized by Okulov (1993, 1995) for the filament in an cylindrical tube, coaxial to
the filament axis. This presentation of the solution does not simplify the calculation
technique because it is a divergent series on the vortex filaments. Therefore, to study
the problem we have to start by developing a simple procedure, accurate enough
for calculating the velocity field induced by helical vortex filaments. To simplify
calculations, we limit our study by considering only infinite fluid.

2. Velocity field induced by a circular array of helical vortex filaments
According to Hardin’s (1982) solution in cylindrical coordinates (r, θ, z), the

components of fluid velocity induced by the N vortices outside the vortex cores
are given as,

ur (r, a, χ ) =
Γ a

πl2
Im

N∑
n=1

{
H 1,1

1 (r/ l, a/l, χ − 2πn/N)

H 1,1
1 (a/l, r/l, χ − 2πn/N)

}
, (2.1a)

uθ (r, a, χ) =
Γ

2πr

{
0

N

}
+

Γ a

πrl
Re

N∑
n=1

{
H 0,1

1 (r/ l, a/l, χ − 2πn/N)

H 1,0
1 (a/l, r/l, χ − 2πn/N)

}
, (2.1b)

uz (r, a, χ) =
Γ

2πl

{
N

0

}
− Γ a

πl2
Re

N∑
n=1

{
H 0,1

1 (r/ l, a/l, χ − 2πn/N )

H 1,0
1 (a/l, r/l, χ − 2πn/N )

}
, (2.1c)

and the respective streamfunction is written in the following form,

ψ =
Γ N

4π

{
r2/l2 − ln a2

a2/l2 − ln r2

}
− Γ ar

πl2
Re

N∑
n=1

{
H 1,1

0 (r/ l, a/l, χ − 2πn/N)

H 1,1
0 (a/l, r/l, χ − 2πn/N)

}
, (2.2)

where χ = θ − z/l, and the upper expression in braces corresponds to the case of
r < a, and the lower to r > a. The sum in these formulae all involve Kapteyn series
and is written as follows:

HI,J
M (x, y, χ) =

∞∑
n=1

mMI 〈I 〉
m (mx)K 〈J 〉

m (my) exp(imχ), (2.3)

where x � y, I
〈0〉
m (mx), K

〈0〉
m (my) are the modified Bessel functions and I

〈1〉
m (mx),

K
〈1〉
m (my) are their respective derivatives.
Note that formulae (2.1)–(2.3) depend only upon two helical variables r and χ .

This means that the solution outside of Λ belongs to a class of flows with helical
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symmetry. It follows immediately from (2.1), that the tangential velocity to the helical
lines (1.1) remains constant

uτ ≡ uz + ruθ/ l = Γ N/2πl ≡ const. (2.4)

Similar to the translation fluid motion with constant velocity in the whole space,
the fluid flow with helical symmetry satisfying condition (2.4) can be tentatively
called a flow with ‘translation motion’ along the helical lines. Analysing (2.1), we
can conclude that the considered class of flows can be regarded as a ‘translation
motion’ only conventionally. Indeed, the velocity components ur, uθ and uz can
take on arbitrary values in space, in fulfilling the relation (2.4), which bounds just
axial and circumferential velocity components. In an extreme case, when l → ∞, and
helical lines become straight, the flow towards the z-axis vanishes; the vortex filament
becomes rectilinear and induces only circular motion around its own axis, while the
axial component of the velocity becomes equal to zero. For the velocity component
uχ = uθ − ruz/ l, which is orthogonal to ur and to uτ , we obtain from (2.1):

uχ (r, a, χ ) =
Γ N

2π

{−r/l2

1/r

}
+

Γ a

πl2

(
l

r
+

r

l

)
Re

N∑
n=1

{
H 0,1

1 (r/ l, a/l, χ − 2πn/N)

H 1,0
1 (a/l, r/l, χ − 2πn/N)

}
. (2.5)

We analyse in detail the flows with helical symmetry to prove a validation of the
relation (2.4) for all points of the flow field including the vortex cores of Λ. Using
helical variables r and χ , the problem can be reduced formally to two-dimensional
continuity and Euler equations:

∂(rur )

∂r
= −∂uχ

∂χ
, (2.6a)

∂ur

∂t
+ ur

∂ur

∂r
+ uχ

∂ur

r∂χ
− 1

r

l4

(r2 + l2)2

(
r

l
uτ + uχ

)2

= − 1

ρ

∂p

∂r
, (2.6b)

∂

∂t
uχ + ur

∂uχ

∂r
+ uχ

∂uχ

r∂χ
+

uτur

r
= − 1

ρ

l2 + r2

l2
∂p

r∂χ
, (2.6c)

∂

∂t
uτ + ur

∂uτ

∂r
+ uχ

∂uτ

r∂χ
≡ 0, (2.6d)

with velocity components ur, uτ = uz + ruθ/ l and uχ = uθ − ruz/ l, which correspond
to those in cylindrical coordinates and with an analogue of the streamfunction by the
following equations:

ur =
1

r

∂ψ

∂χ
, uχ = −∂ψ

∂r
, (2.7a)

uθ =
l2

r2 + l2

(
r

l
uτ + uχ

)
=

l2

r2 + l2

(
r

l
uτ − ∂ψ

∂r

)
, (2.7b)

uz =
l2

r2 + l2

(
uτ − r

l
uχ

)
=

l2

r2 + l2

(
uτ +

r

l

∂ψ

∂r

)
. (2.7c)

Equation (2.6d) defines a simple class of solutions with uτ = const (Okulov 1993;
1995). The vorticity vector in helical coordinates for the given class of flows can be
written as

ωr =
1

r

∂uτ

∂χ
≡ 0, (2.8a)
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ωθ = −1

l

∂ur

∂χ
− ∂uz

∂r
= −r

l

[
1

r2

∂2ψ

∂χ2
+

1

r

∂

∂r

(
rl2

r2 + l2
∂ψ

∂r

)
− 2uτ

l

(
l2

r2 + l2

)2]
, (2.8b)

ωz = −1

r

∂ur

∂χ
+

1

r

∂(ruθ )

∂r
= −

[
1

r2

∂2ψ

∂χ2
+

1

r

∂

∂r

(
rl2

r2 + l2
∂ψ

∂r

)
− 2uτ

l

(
l2

r2 + l2

)2]
. (2.8c)

Condition uτ = const for all points of the flow including the vortex cores of Λ shows
that a radial component of the vorticity field in (2.8a) is equal to zero, while the
analysis of (2.8b) and (2.8c) allow us to get the correlation between the axial and
circumferential components of the vorticity vector

ωr = 0, ωθ/ωz = r/ l or ωθ = rωz/ l. (2.9a–c)

From (2.8b) and (2.8c) we find the equation to determine a streamfunction ψ based
on a given distribution of axial component of vorticity ωz

∂2ψ

∂r2
+

(
1 − 2r2

r2 + l2

)
1

r

∂ψ

∂r
+

l2 + r2

r2l2
∂2ψ

∂χ2
=

2uτ

l

(
l2

r2 + l2

)2

− ωz(r
2 + l2)

l2
, (2.10)

which was used to solve the problem of a helical vortex filament in a cylindrical tube
(Okulov 1993, 1995).

Equations (2.8) mean that for the given class of flows with uτ =const, the vorticity
vector is always directed tangentially to the helical lines. The opposite statement is also
true (Okulov 2002): if the vorticity field is collinear to helical lines (1.1), then condition
(2.4) holds true for all points of the flow field including the vortex cores of Λ. Indeed,
if we apply condition (2.9) to the vorticity field in the flows with helical symmetry,
then after integrating (2.9a) and taking into consideration the determination of ωr ,
we will find uτ = f (r). According to (2.9b) the difference ωθ − rωz/ l is zero. Taking
into account (2.7) and (2.8), we obtain f ′(r) = 0, i.e. uτ = const. Thus, fulfilment of
the condition (2.4), applied to the whole of the velocity field, is equivalent to (2.9), i.e.
to the requirement of collinearity of the vorticity field with tangents directed to the
helical lines. In this case, any distribution of the vorticity, satisfying (2.9), including
the considered vortex configuration Λ of identical helical vortices, is described by
linear equation (2.10). Therefore, the superposition principle used in (2.1) and (2.2) to
determine the total induced velocity field outside the vortex cores is justified for the
whole of the flow field. So now it is enough to develop a calculation technique for
kinematic characteristics of the flow induced by a single filament.

3. The evaluation of the Kapteyn series
Note that HI,J

M (x, y, χ) series converge slowly, especially when approaching the
singularity (r → a and χ → 0), which complicates the calculation of the kinematic
characteristics of the flow (2.1)–(2.2). Let us consider some methods used to calculate
series (2.3) in the problem of self-induced motion of a helical vortex filament (see
Ricca 1994; Boersma & Wood 1999). The binormal component of the velocity ub

in dimensionless form (i.e. dividing by Γ/4πa) was calculated at the points situated
on a helical surface θ − z/l = 0 at a small distance from the vortex filament σ = εR

(where R = (a2 + l2)/a = a(1 + τ 2) and τ = l/a). Following Ricca’s (1994) notation in
the interior point, r = a − εR for �v = ubR/a − 2/ε = ub(1 + τ 2) − 2/ε, we have:

�vint = 2
(1 + τ 2)1/2

τ
− 4(1 − ε)(1 + τ 2)3/2

τ 2[1 − ε(1 + τ 2)]
Re

{
H 0,1

1

(
1 − ε(1 + τ 2)

τ
,
1

τ

)}
− 2

ε
, (3.1)
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and in the exterior point, r = a + εR for �v = ubR/a + 2/ε = ub(1 + τ 2) + 2/ε,

�vext = − 2τ (1 + τ 2)1/2

1 + ε(1 + τ 2)
− 4(1 + ε)(1 + τ 2)3/2

τ 2[1 + ε(1 + τ 2)]
Re

{
H 1,0

1

(
1

τ
,
1 + ε(1 + τ 2)

τ

)}
+

2

ε
. (3.2)

Ricca attempted to calculate (3.1) and (3.2) by improving the accuracy of the
cylindrical functions, contained in the H 0,1

1 and H 1,0
1 series. The calculation results for

three ranges of helical pitch variations τ = {0, 5 ÷ 4}, {5 ÷ 12} and {29 ÷ 37} at the
values of ε =0.1, 0.01 and 0.001, respectively, were presented graphically in his figure 6
(Ricca 1994). However, the necessity of terminating the series in these calculations
means that he cannot avoid the problem of error accumulation when calculation
points approach singular points (ε → 0 and τ → 0 or ∞). In order to overcome this
difficulty, Boersma & Wood (1999) removed the singularities from the series (2.3) by
simply adding and subtracting the pole and logarithm in spatial variables for two
particular cases of the series (2.3) used in (3.1) and (3.2),

H 0,1
1

(
1 − ε(1 + τ 2)

τ
,
1

τ
, 0

)
=

1

4

τ 2

(1 + τ 2)3/2

(
−2

ε
+ ln(ε) + ln

(√
1 + τ 2

2

))

+
τ

2
− τ 2

4
W (τ ) + o(1), (3.3)

H 1,0
1

(
1

τ
,
1 + ε(1 + τ 2)

τ
, 0

)
=

1

4

τ 2

(1 + τ 2)3/2

(
2

ε
+ ln(ε) + ln

(√
1 + τ 2

2

))

− τ 2

4
W (τ ) + o(1), (3.4)

where o(1) is Landau’s symbol for an expression that tends to 0 when ε → 0. Moreover,
Boersma & Wood (1999) employed an integral form found in Boersma & Yakubovich
(1998) for the difference W between series of the Kapteyn type in the form of (2.3)
and terms with singularities from (3.3)–(3.4):

W (τ ) =

∫ ∞

0

{
sin2 t

[τ 2t2 + sin2 t]3/2
− 1

[τ 2 + 1]3/2

H (1/2 − t)

t

}
dt, (3.5)

where H (·) denotes the unit step function. The integral remainder (3.5) describes the
main effect of vortex torsion and is regular, but cannot be integrated in a closed form
just as the Biot-Savart law for the helical vortex filament. Therefore, it was numerically
calculated to six significant figures and given in table 1 of Boersma & Wood (1999)
for twenty-one values of the pitch τ . By means of (3.5), Boersma & Wood (1999)
specified the known asymptotic forms for large and small values of dimensionless
pitch τ (Ricca 1994; Kuibin & Okulov 1998). Unfortunately, the asymptotic forms
are inaccurate in the practically important variation range of τ from 0.5 to 3, even
after this improvement.

Another example of computation of series (2.3) concerns calculation of a binormal
velocity component on the cylinder containing the helical vortex filaments. This
calculation is associated with the determination of the moving velocity of an array
of N identical helical vortex filaments located on a cylinder with identical angle of
displacement δ = 2π/N . The dimensionless binormal velocity component in Wood &
Boersma (2001) was represented as

ub = −4πa

Γ

τ

(1 + τ 2)1/2
uχ = (1 + τ 2)1/2W (α, τ ) − 2τ

(1 + τ 2)1/2
, (3.6)
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where α is the angular coordinate from a vortex filament to a reference point, while
integral

W (α, τ ) =

∫ ∞

0

{
sin2(t − α/2)

[τ 2t2 + sin2(t − α/2)]3/2

}
dt, 0 < α < 2π, (3.7)

just as the integral (3.5), could not be integrated in a closed form. Note that the
integral (3.7) was calculated for non-zero values of α = kδ (k =1, . . . , N − 1), since
for α = 0 this integral diverges. Moreover, Wood & Boersma (2001) ascertained the
relationship with the integral (3.5), by subtracting singularity from (3.7) within the
limit at α → 0, which can be considered as a finite part of (3.7) when α → 0. However,
for testing other computation methods, it is more important to note that the values
(3.7) were calculated to six significant figures and given in table 1 (Wood & Boersma
2001) at α = π/2, 2π/3, π for twenty-one values of τ , the same way as in Boersma &
Wood (1999).

Let us consider another approach as a more effective evaluation procedure of
series of the Kapteyn type written in form of (2.3). This approach to determine the
velocity and streamfunction, gives the series (2.3) with direct extraction of singularities
in distorted spatial variables, expressly taking into consideration the vortex torsion
(Okulov 1993, 1995). In contrast to the above described methods, this approach allows
us to calculate the flow characteristics (2.1)–(2.2) for any point using elementary
functions. Further on, we will generalize this method for series (2.3) of any of their
types (i.e. I and J = 0 or 1), appearing in determinations of streamfunction (M = 0),
velocity field (M =1), and its spatial derivatives (M = 2), determined in Appendix A.
To this end, in series (2.3) we formally substitute cylindrical functions by their uniform
expansions at high orders (see Appendix B). The resulting series can be reduced to
the closed forms (see Appendix C), so that the main part of the series (2.3) SI,J

M takes
the form:

SI,J
M = λI,J

[
bI,J

M,0

eξ+iχ

(eξ − eiχ )2
+ bI,J

M,1

eiχ

eξ − eiχ
+ bI,J

M,2 ln(1 − e−ξ+iχ )

+ bI,J
M,3Li2(e

−ξ+iχ ) + bI,J
M,4Li3(e

−ξ+iχ ) + bI,J
M,5Li4(e

−ξ+iχ )

]
, (3.8)

eξ =
x

y

exp(
√

1 + x2)(1 +
√

1 + y2)

exp(
√

1 + y2)(1 +
√

1 + x2)
, λI,J = 1

2

(
√

1 + x2)I−1/2(
√

1 + y2)J−1/2

xI (−y)J
,

bI,J =




0 0 1 αI,J βI,J γ I,J

0 1 αI,J βI,J γ I,J 0

1 αI,J βI,J γ I,J 0 0


 ,

where Lik(z) =
∑∞

m=1 (zm/mk), |z| < 1 are the polylogarithms, Li0(z) = ln(1 − z); αI,J ,
βI,J , γ I,J are the polynomials of 1–3 degree, obtained from ϑi and υi functions
by multiplication of the uniform expansion from Appendix B. The possibility of
calculating the kinematic characteristics of (2.1)–(2.2) through replacing series HI,J

M

by their main part SI,J
M was evaluated comparing with velocity values, calculated

based on W magnitudes, taken from table 1 of Wood & Boersma (2001). As a result,
it was determined that the maximum deviation takes place for τ values from 0.5 to 3,
where asymptotics are not valid. This deviation is not significant – just around 2%,
which is acceptable for calculations of the velocity field for any points. Taking into
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W (τ ) W (π/2, τ ) W (3π/2, τ ) W (π, τ )

(3.5) (4.9) Difference (3.7) (4.5) Difference (3.7) (4.5) Difference (3.7) (4.5) Difference
τ by WB present data (%) by WB present data (%) by WB present data (%) by WB present data (%)
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0.1 8.01822 8.01822 0.0 9.65819 9.65819 0.0 9.45703 9.45703 0.0 9.31407 9.31407 0.0
0.2 3.70710 3.70711 −0.0005 4.67226 4.67226 0.0 4.47767 4.47767 0.0 4.33908 4.33908 0.0
0.3 2.39240 2.39257 −0.0173 3.02815 3.02801 0.0143 2.84996 2.84990 −0.0057 2.72379 2.72392 0.0134
0.4 1.74543 1.74601 −0.0579 2.22381 2.22333 0.0477 2.06975 2.06956 −0.0192 1.96213 1.96257 0.0437
0.5 1.34138 1.34214 −0.0759 1.75584 1.75524 0.0602 1.62671 1.62649 −0.0224 1.53777 1.53832 0.0551
0.6 1.05695 1.05730 −0.035 1.45425 1.45400 0.0250 1.34689 1.34681 −0.0081 1.27372 1.27393 0.0212
0.7 0.844909 0.844428 0.0481 1.24544 1.24587 −0.0425 1.15576 1.15594 0.0184 1.09502 1.09463 −0.0395
0.8 0.682350 0.681017 0.1333 1.09273 1.09382 −0.1092 1.01707 1.01749 0.0429 0.965957 0.964960 −0.0997
0.9 0.555822 0.553923 0.1899 0.976115 0.977631 −0.1516 0.911533 0.912114 0.0581 0.867901 0.866524 −0.1377
1 0.456367 0.454283 0.2084 0.883919 0.885561 −0.1642 0.828167 0.828789 0.0622 0.790427 0.788942 −0.1485
2 0.092836 0.093583 −0.0746 0.468166 0.467590 0.0576 0.448986 0.448773 −0.0213 0.435385 0.435903 0.0518
3 0.030892 0.031366 −0.0475 0.321010 0.320630 0.0380 0.311638 0.311492 −0.0146 0.304712 0.305057 0.0345
4 0.013608 0.013752 −0.0144 0.244085 0.243964 0.0121 0.238716 0.238667 −0.0049 0.234623 0.234735 0.0112
5 0.007112 0.007131 −0.0019 0.196740 0.196720 0.0020 0.193348 0.193338 −0.0010 0.190702 0.190721 0.0019
6 0.004162 0.004142 0.0020 0.164690 0.164704 −0.0014 0.162397 0.162401 0.0004 0.160576 0.160564 −0.0012
7 0.002639 0.002609 0.0030 0.141572 0.141595 −0.0023 0.139943 0.139951 0.0008 0.138630 0.138610 −0.0020
8 0.001776 0.001746 0.0030 0.124120 0.124143 −0.0023 0.122917 0.122925 0.0008 0.121935 0.121914 −0.0021
9 0.001251 0.001225 0.0027 0.110482 0.110503 −0.0021 0.109567 0.109575 0.0008 0.108812 0.108793 −0.0019

10 0.000914 0.000891 0.0023 0.099536 0.099554 −0.0018 0.098821 0.098828 0.0007 0.098227 0.098210 −0.0017

Table 1. Comparison of numerical evolution of W (τ ) and W (α, τ ) for α = π/2, 3π/2, π and values of τ indicated. The present data are based on
(4.5) and (4.9). The results for (3.5) and (3.7) were taken from Wood & Boersma (2001) – WB, table 1.
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consideration a few terms of the regular remainder we reduce even this error:

RI,J
M (x, y, χ) = HI,J

M (x, y, χ) − SI,J
M (x, y, χ),

where

RI,J
M =

∞∑
m=1

[
mMI 〈I 〉

m (mx)K 〈J 〉
m (my) − mMλI,J (eξ )m

(
1 +

αI,J

m
+

βI,J

m2
+

γ I,J

m3

)]
eimχ . (3.9)

Figure 3 illustrates the analysis of the influence of the first three terms of the remainder
RI,J

M ,

�R1(r, τ, χ ) =
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,

divided by the main part SI,J
M of the series in percentage. The presented data make it

clear that in order to reduce the error down to 0.2% it is sufficient to add the first
term (m = 1) of remainder (3.9) to SI,J

M

I
〈I 〉
1 (x)K

〈J 〉
1 (y) eiχ − λ〈I,J 〉 eξ+iχ (1 + αI,J + βI,J + γ I,J ). (3.10)

Thus, the evolution of the flow induced by helical vortex filaments reduces to
calculation of the main part SI,J

M , represented by elementary functions. Moreover, the
information on vortex torsion expressly includes singularities and their coefficients
in (3.8). Therefore, representation of series (2.3) by means of (3.8) even adding the
remainder (3.10) is more simple and effective for the solution of the problem, rather
than approaches by Ricca (1994) and Boersma & Wood (1999). Please note, that
as τ → ∞, when the helical filaments become rectilinear lines, which we consider as
point vortices, the coefficients α(i,j ), β (i,j ), γ (i,j ) tend to zero, and the solution reduces
to that for the plane case, i.e. it is described by the pole for velocity field, and by the
logarithm in terms for the streamfunction.

4. On the motion of multiple helical vortices
To demonstrate the efficiency of the proposed procedure for velocity field evolution

via SI,J
M , let us determine the velocity of the considered helical vortex array (figure 2),

which uniformly moves along the cylinder axis with translation velocity V = uz(a, 0) =
(Γ N/2πa − aΩ)/τ and rotates with angular velocity Ω = uθ (a, 0)/a. Therefore, it is
enough to define one of the motion components, e.g. Ω . Connection between transla-
tion and rotation velocities of the vortex configuration follows from (2.4) and conforms
to (4.13) from Ricca (1994), but both are at variance with the erroneous trigonometric
interpretation of (5.5) and (5.6) from Wood & Boersma (2001). The error was due to
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Figure 3. Evaluation of the regular remainder (3.9) in per cent to the main part of (3.8) for
six values of helical pitch τ =0.1, 0.5, 1.5, 2.5, 5.0, 10 and for the first three terms in the series
of (3.9): —, m= 1; ---, m= 2; . . . , m= 3.

the incorrect treatment of the helix’s tangential velocity uτ . Note that in contrast to a
plane case, where vortex motion is determined by the total velocity, induced by other
vortices at the point of the considered vortex, for helical vortices the total velocity
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consists of two components:

Ω = ΩInd + ΩSind, (4.1)

where ΩInd is a rotation velocity component of a fixed vortex, induced by other vor-
tices, and ΩSind is the velocity of its self-induced motion (Saffman 1992; Ricca 1994;
Kuibin & Okulov 1998; Boersma & Wood 1999). If we fix a vortex with zero angular
coordinate for the considered vortex array and neglect the effect of the final core
size of other vortices, substituting them by filaments, according to the superposition
principle (see § 2) and formula (2.1) for the tangential velocity component, the first
component of the rotation velocity (4.1) of the helical vortex array takes the form

4πa2

Γ
ΩInd =

4

τ

N−1∑
n=1

Re

[ ∞∑
m=1

mIm

(m

τ

)
K ′

m

(m

τ

)
eim(2πn/N)

]
=

4

τ
Re

N−1∑
n=1

H 0,1
1

(
1

τ
,
1

τ
,
2πn

N

)
.

(4.2)

In the series (4.2) we substitute H 0,1
1 by their main part S0,1

1 , adding (3.10) to improve
the accuracy. After a long calculation with summation of singularities and poly-
logarithms placed uniformly over a circumference (Appendix D), we obtain

4πa2

Γ
ΩInd = N − 3 − τ

(1 + τ 2)3/2
(ln(N) − 1)

+
τ 3

(1 + τ 2)9/2

[(
τ 4 − 3τ 2 + 3

8

)(N 2 − 1

N2
ς (3) − 1

)]
− 4

τ
I1

(
1

τ

)
K ′

1

(
1

τ

)
. (4.3)

where ζ (·) is the Riemann zeta function. In (4.3), we additionally used the fact that
for x = y = 1/τ coefficients in (3.8) according to Appendix B, take a relatively simple
form:

α〈0,1〉 = −α〈1,0〉 =
1

2

τ

(1 + τ 2)3/2
, α〈0,0〉 = α〈1,1〉 = 0,

β〈0,0〉 = −β〈1,1〉 =
−τ 2

(1 + τ 2)3
(

1
2
τ 2 − 1

8

)
, β〈0,1〉 = β〈1,0〉 = 0,

γ 〈0,1〉 = −γ 〈1,0〉 =
1

2

τ 3

(1 + τ 2)9/2

(
τ 4 − 3τ 2 + 3

8

)
, γ 〈0,0〉 = γ 〈1,1〉 = 0.

Equation (4.3) can be applied with good approximation for all values of τ and any
number of vortices in the vortex configuration. Let us prove the last statement by
comparing the integral remainders W , calculated by (3.7) in Wood & Boersma (2001)
and recalculated through the value of angular velocity (4.3). Thus, in accordance with
(2.4), (2.7) and (3.6), note that

4πa2

Γ
ΩInd =

2(N − 1)

1 + τ 2
− τ√

1 + τ 2
ubInd

,
4πa2

Γ
ΩSind =

2

1 + τ 2
− τ√

1 + τ 2
ubSind

, (4.4)

where ubInd
is a binormal velocity of a fixed vortex, induced by other vortices, ubSind

is the velocity of its self-induced motion, and the total binormal velocity is ub = ubInd
+

ubSind
. After substitution of (3.6) and (4.3) into (4.4) for the cases of N = 2, 3 and

4 considered in Wood & Boersma (2001), and solution of the equations obtained
in relation to values of W (π/2, τ ), W (3π/2, τ ) and W (π, τ ), we define approximated
relationships for the calculation of W in the whole variation range of τ ,

W

(
π

2
, τ

)
≈ 1

τ
− ln 2

2(1 + τ 2)3/2
− τ 2

(1 + τ 2)9/2

(
τ 4 − 3τ 2 + 3

8

) 3

32
ς (3), (4.5a)
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Figure 4. Comparison of the remainder term C for the self-induced motion of a helical
vortex: CLF, the asymptotic by Levy & Forsdyke (1928); CW , Widnall (1972); CMS, Ricca’s
asymptotic with applying the technique by Moore & Saffman (1972); CH , Ricca’s calculation
based on Hardin’s solution (1982). Points are the calculation based on (3.5), tabulated by
Boersma & Wood (1999).

W

(
3π

2
, τ

)
≈ 2

τ
− ln 3 − 1

2(1 + τ 2)3/2
− τ 2(8ς (3) − 9)

9(1 + τ 2)9/2

[(
τ 4
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2
τ 2 +
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+
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τ 2
I1

(
1
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K ′

1

(
1

τ

)
,

(4.5b)

W (π, τ )≈ 3

τ
− ln 2−1

(1+τ 2)3/2
− τ 2(3ς (3)−4)

4(1+τ 2)9/2

[(
τ 4 −3τ 2 + 3

8

)]
+

4

τ 2
I1

(
1

τ

)
K ′

1

(
1

τ

)
. (4.5c)

As a result, (4.5a)–(4.5c) take a simpler form than respective asymptotics from
Wood & Boersma (2001). So the proposed approach can be used for calculation of
both Ω and Wwith a sufficient accuracy for any N (see comparisons between fifth
and sixth, eighth and ninth, eleventh and twelfth columns of table 1).

Determination of ubSind
or ΩSind (angular velocity of self-induced motion of every

single vortex from the considered helical vortex array) is a considerably more complex
problem, which has been examined by many famous workers in hydromechanics.
As was mentioned in § 1, the most significant achievements in a definition of the
self-induced motion were described by Ricca (1994), Kuibin & Okulov (1998) and
Boersma & Wood (1999).

Let us consider the solution of the ΩSind-problem based on the approach of velocity
field evolution, presented in the previous item. To this end, we will use (4.4). According
to Ricca (1994), the self-induced dimensionless binormal velocity ubSind

was defined as

ubSind
=

1

1 + τ 2

[
ln

(
1

ε

)
− 1

4
+ C(τ )

]
where C(τ ) =

�vint + �vext

2
− 2 ln

1

ε
. (4.6)

Thus, the solution of the problem is reduced to determination of C(τ ) using formulae
(3.1) and (3.2). Using these terms, Ricca (1994) compared all the previous results.
His comparison of C(τ ) using asymptotics by Levy & Forsdyke (1928), CLF; Widnall
(1972), CW ; Ricca’s asymptotic, CMS, derived by applying the technique of Moore &
Saffman (1972), and his calculations based on the Hardin solution, CH , are reproduced
in figure 4. In addition to this, a new calculation of C(τ ) carried out with the help
of (3.3)–(3.4) via values of W tabulated by Boersma & Wood (1999) was indicated
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Figure 5. Evaluation of the remainder term C for self-induced motion of a helical vortex,
using different approximating levels for the main part S

I,J
M in (3.8): –·–, calculations using only

the pole in (3.8); ---, pole and logarithm; · · ·, pole, logarithm and polylogarithms; —, coincides
with the calculation according to formula (4.7) in full. Points are the calculation based on
(3.5), tabulated by Boersma & Wood (1999).

by points in the same figure. Though the new C(τ ) was calculated for sample points
only, it is the most accurate one, and the data in figure 4, as well as in the next figure,
should be considered as a standard for other asymptotics and theories. Owing to this
comparison, we conclude that of the calculations by Ricca, CH are the closest to the
standard, although they were carried out numerically and for a limited number of
points just as the reference calculations via data of Boersma & Wood (1999). All
attempts to find an analytical form of solution (CLF, CMS, CW ) are not accurate
enough. To construct a new analytical solution, we will use (3.1) and (3.2) replacing
series H 0,1

1 and H 1,0
1 on their principal parts S0,1

1 and S1,0
1 with the first term of

the remainder (3.10) to improve the calculation accuracy. After complex algebra, we
obtain:

CO(τ )= ln

(
τ

(1+τ 2)3/2

)
−4

(1+τ 2)3/2

τ 2
I1

(
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)
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−
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√
1+τ 2+3τ 2)

τ

+
τ 2
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[(
τ 4 −3τ 2 + 3

8

)
ς (3)−33

8
−2τ 4 − 1
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]
, (4.7)

or using (4.6) and (4.4) we obtain for ΩSind:

4πa2
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1
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)
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4

)
. (4.8)

Comparison of (4.7) in figure 5 (solid line) with the standard data (points) is in
excellent agreement with the standard data. An additional test of (4.7) was made by
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direct comparison of Wvalues. Using (3.1)–(3.4) and (4.5)–(4.7) in (4.3), we find the
approximation for W (τ ):

W (τ ) ≈ 1√
1 + τ 2

− 1

τ
+

1

(1 + τ 2)3/2
ln

(
τ

2(1 + τ 2)
− 2τ 2

)
− 4
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1
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1
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+
τ 2

(1 + τ 2)9

[(
τ 4 − 3τ 2 + 3

8

)
ς (3) − 33

8
− 2τ 4 − 1

τ 2

]
, (4.9)

in the whole variation range of τ (see comparison between the second and third
columns in table 1).

In figure 5, it is also shown how the solution may differ if the main part of (3.8) takes
into account pole solely; pole and logarithm; pole plus logarithm, and polylogarithms
without the first term of the remainder (3.10). Note that good comparison can be
obtained only if all components of (3.8) and the first term of (3.10) of the remainder
part of the series (2.3) are considered. Thus, it is impossible to reach the required
accuracy in calculation of angular velocity of self-induced motion ΩSind and velocity
induced by other velocity vortices ΩInd, if they are presented by elementary algebraic
functions only. In (4.3) and (4.8), just as in approximations (4.5) and (4.9), we must
consider the component presented via the product of special functions (modified Bessel
functions). However, in presentation of the total angular velocity Ω = ΩInd + ΩSind,
these components disappear. The formula for the angular moving velocity of N helical
vortex arrays takes the simple algebraic form:

4πa2

Γ
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4πa2

Γ
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− 1

4

)
. (4.10)

Note that according to (4.4) for total velocities and (5.7) from Wood & Boersma
(2001), the angular rotation velocity of a helical vortex array can be written using W :

4πa2

Γ
ΩWB =

2N

1 + τ 2
− τ√

1 + τ 2
ub = 2N − τ

{
W (τ ) +

N−1∑
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W

(
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ln 2 + 2τ 2 − 1

2
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)
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(
ln

(
1

ε

)
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4

)
. (4.11)

Equation (4.11) allows us to test our result (4.10). In table 2, angular velocities
Ω ′ calculated without the last component in formula (4.10) are compared with the
values of Ω ′

WB calculated also without the last identical components in (4.11). This
comparison was made for 21 values of τ , for which integrals (3.5) and (3.7) were
calculated in Boersma & Wood (1999) and Wood & Boersma (2001). Note that for
the whole range of dimensionless pitch τ , maximal difference does not exceed 0.4%
for N = 2 and the difference decreases with growth of N . In addition, we emphasize
that (4.10) takes a simpler form as compared with the asymptotic forms from Wood
& Boersma (2001).
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N = 2 N = 3 N = 4

(4.11) (4.10) Difference (4.11) (4.10) Difference (4.11) (4.10) Difference
τ by WB present data (%) by WB present data (%) by WB present data (%)

0.01 2.04298 2.04298 0.0 3.04703 3.04703 0.0 4.04991 4.04991 0.0
0.05 2.13399 2.13399 0.0 3.15419 3.15419 0.0 4.16853 4.16853 0.0
0.1 2.19700 2.19700 0.0 3.23700 3.23700 0.0 4.26536 4.26536 0.0
0.2 2.24867 2.24867 0.0 3.32542 3.32541 0.0 4.37976 4.37976 0.0
0.3 2.24632 2.24623 −0.009 3.35348 3.35346 −0.002 4.42943 4.42943 0.0
0.4 2.21636 2.21596 −0.041 3.34541 3.34534 −0.008 4.43731 4.43729 −0.002
0.5 2.17347 2.17281 −0.065 3.31564 3.31549 −0.016 4.41763 4.41758 −0.005
0.6 2.12516 2.12482 −0.034 3.27312 3.27301 −0.011 4.38006 4.38002 −0.004
0.7 2.07484 2.07545 0.061 3.22329 3.22337 0.008 4.33122 4.33124 0.002
0.8 2.02398 2.02584 0.186 3.16943 3.16981 0.038 4.27561 4.27573 0.012
0.9 1.97337 1.97632 0.295 3.11372 3.11438 0.066 4.21636 4.21658 0.022
1 1.92357 1.92714 0.357 3.05766 3.05850 0.084 4.15573 4.15601 0.029
2 1.53243 1.52990 −0.253 2.60726 2.60662 −0.064 3.65977 3.65954 −0.023
3 1.32902 1.32656 −0.246 2.37333 2.37278 −0.055 3.40296 3.40278 −0.018
4 1.22221 1.22119 −0.102 2.25097 2.25079 −0.018 3.26953 3.26947 −0.006
5 1.16050 1.16031 −0.019 2.18053 2.18053 0.000 3.19310 3.19310 0.001
6 1.12175 1.12195 0.019 2.13645 2.13652 0.007 3.14547 3.14550 0.003
7 1.09582 1.09617 0.035 2.10703 2.10712 0.009 3.11381 3.11384 0.003
8 1.07757 1.07797 0.040 2.08638 2.08648 0.010 3.09165 3.09169 0.004
9 1.06421 1.06462 0.041 2.07131 2.07142 0.010 3.07553 3.07556 0.003

10 1.05413 1.05452 0.039 2.05998 2.06006 0.009 3.06341 3.06344 0.003

Table 2. Comparison of angular velocities 4πa2Ω ′/Γ with the values of 4πa2Ω ′
WB/Γ for different numbers of helical vortices in the arrays and

several values of helical pitch τ fixed in Wood & Boersma (2001). The results for (4.10) and (4.11) were calculated without the last identical
components.
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5. Stability of the multiple helical vortices
Clearly, there is an equilibrium in which the multiple helical vortices uniformly

move along the cylinder axis with translation velocity V = (Γ N/2πa − aΩ)/τ and
rotate with angular velocity Ω . In order to formulate the problem on linear stability
of the equilibrium motion for multiple helical vortices, we introduced in § 2 the helical
variables (r, χ) and the corresponding velocity components (ur, uχ = uθ − uz/τ ). In
this case, the problem reduces to a two-dimensional task (Okulov 2002), which can
be solved according to the solution of a classical problem on linear stability of
equilibrium for a polygonal array of point vortices (Saffman 1992).

Let the kth vortex (k ∈ [0, N − 1]) be displaced from the equilibrium position to the
point (a + rk, 2πk/N + t(uχ/a) + χk) or (a + rk, 2πk/N +(Ω − V/l)t +χk), then the
equations of motion of the kth disturbed vortex can be written as:

d

dt
(a + rk) =

∑
n(n�=k)

ur

(
a + rk, a + rn,

2π(n − k)

N
+ χk − χn

)
, (5.1a)

(a + rk)
d

dt

(
2πk

N
+(Ω − V/l)t +χk

)
=

∑
n(n�=k)

uχ

(
a + rk, a + rn,

2π(n − k)

N
+ χk − χn

)
.

(5.1b)

The velocities are given by (2.1) and (2.5). Linearizing in rk, rn, χk, χn and substituting
the velocity field derivatives (see Appendix A), a linear approximation of (5.1) for
motion of the kth vortex can be written after some algebra as:

drk

dt
=

Γ

πa

1

τ 2
Re

{
χk

∑
n(n�=k)

H 1,1
2

(
a, a,

2π(n − k)

N

)
−

∑
n(n�=k)

χnH
1,1
2

(
a, a,

2π(n − k)

N

)}
,

(5.2a)

a
dχk

dt
=

Γ

πa2

1

τ 2
Re

{
rk

∑
n(n�=k)

[
τ 2 + 1

τ 2
H 1,1

2

(
a, a,

2π(n − k)

N

)

+
1 − τ 2

τ
H 0,1

1

(
a, a,

2π(n − k)

N

)]
+

(τ 2 + 1)2

τ 2

∑
n(n�=k)

rnH
1,1
2

(
a, a,

2π(n − k)

N

)}

−
(

τ 2 + 1

τ 2
Ω − Γ N

2πa2τ 2

)
rk. (5.2b)

Following Saffman (1992), we will look for the solution of system (5.2) in the following
form:

rk = α(t) e2πkm/N, χk = β(t) e2πkm/N .

Here, m is the subharmonic wavenumber, taking integral values within the range
[0, N − 1]. For m = 0, all vortices behave in the same way.

As a result, we obtain the following system of equations:

α′(t) = A(m)β(t),

β ′(t) = B(m)α(t),

from which it follows that α and β are proportional to exp(t
√

AB). Therefore, if there
is any m, for which AB � 0, then the system is unstable. Substituting HI,J

M for SI,J
M by

(3.8), and after time-consuming algebra, we were able to find an algebraic form for
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product AB:

16π2a3

Γ 2
AB =

[
m(N − m)

√
1 + τ 2

τ
− τ

4

4τ 2 − 3

(1 + τ 2)5/2

(
N

m
− C − ψ

(
− m

N

))]

×
[
m(N − m)

√
1 + τ 2

τ
− N +

τ√
1 + τ 2

+ (N − 1)
3 − τ 2

1 + τ 2

+
τ

(1 + τ 2)3/2

(
ln

(
τ

σN
√

1 + τ 2

)
+ 3

4

)

+
τ 3

(1 + τ 2)5/2

(
ln(N) −

(
1 − 1

4τ 2

)(
N

m
− C − ψ

(
− m

N

)))

+
τ 3

(1 + τ 2)9/2

[(
τ 4 − 3τ 2 + 3

8

)ς (3)

N2
− τ 4 − 3τ 2 − 3 − 1

τ 2

]

+
τ 3(1 − τ 2)

(1 + τ 2)11/2

(
τ 4 − 3τ 2 + 3

8

)N2 − 1

N2
ς (3)

]
, (5.3)

where C = 0.577215 . . . is the Euler constant, and ψ(·) is the psi function. Note that
(5.3) at τ → ∞ reduced to the formula for the case of point vortices (Saffman 1992),

16π2a3

Γ 2
AB = m(N − m)[m(N − m) − 2(N − 1)].

Analysing (5.3) at various values of pitch τ , we determined unstable modes (figure 6),
which are more realistic for analysing for the existence of equilibrium for real N -vortex
arrays in a tornado, after vortex breakdown, in vortex chambers etc. rather than the
solution for the point vortex array (Saffman 1992). In order to compare the arrays
with different numbers of vortices to keep total intensity in a system, the vortex size
was varied so that the total area of core cross-sections was constant, i.e. σN = 0.4/

√
N .

Note, that decreasing the vortex pitch leads to loss of stability for fewer and fewer
vortices in the arrays, and at τ � 1.5, the stable helical vortex arrays are completely
absent for the fixed vortex core. Qualitatively, these data agree with the results
of visual observations of the multiple helical vortices without hub vortex. Besides,
in order to evaluate the influence of vortex core sizes, neutral curves for several
equilibrium circular helical vortex arrays were plotted in figure 7. Experimental
results of Alekseenko et al. (1999) allow us to carry out quantitative comparison
as well. Alekseenko et al. (1999) describe the double vortex structure (N = 2) with
dimensionless pitch τ = 1.5. Though this pattern is close to the instability boundary
(see figure 7), it is still stable, i.e. such a vortex couple can exist. Proximity of the
vortex parameters to the boundary of unstable regimes is confirmed indirectly by the
fact that it was quite difficult to obtain such vortices during the experiment. Very fine
adjustment of the experimental set-up, as well as the flow regimes, was required to
obtain such a vortex couple.

6. Conclusion
In the present work, a classical problem of stability of a circular equilibrium array

of Npoint vortices to infinitesimal space displacements is, for the first time, generalized
for the case of multiple N helical vortex arrays. Consequently, the analytical solution
has been obtained. This solution allows us to provide an efficient analysis of the
experimentally observed stable vortex arrays (couples, triplets, etc.)
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Figure 6. Diagrams of unstable subharmonic wavenumbers (m) for the circular equilibrium
array of N helical vortices with conservation of a total cross-section area for vortex cores, i.e.
σN = 0.4/

√
N .

The algebraic presentation allowing us to carry out high-accuracy calculations
within the whole range of helical pitch alteration is obtained as an additional
intermediate result for the angular rotation velocity of the N helical vortex array. The
new formula has a simpler form as compared with the known asymptotics (Boersma
& Wood 1999; Wood & Boersma 2001).

Solution of the above two classical problems of vortex dynamics became possible
because of the discrimination in the velocity field of the principal part induced by
an infinitely slender vortex filament. The principal part was expressed in the form of
the sum of elementary algebraic functions: pole plus logarithm with a small regular
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σ

Figure 7. Neutral stability curves for the circular equilibrium arrays of helical vortices: —,
N =2; ---, N = 3; –·–, N =4 (stable region above each curve).

remainder. Such an approach and the solution of the problems are important both
for theoretic and applied hydromechanics, as well as for many other areas of natural
science, where a rotor (vortex) concept is the basic idea.

The work has been supported by INTAS under grant 00-00232 and the Russian
Fund for Basic Research under grant 04-01-00124.

Appendix A. Derivatives of velocity field induced by helical vortex filament
Here are some forms of velocity field {ur , uχ ,} derivatives, induced in unbounded

space by infinitely slender helical vortex filament:

∂ur

∂r
=

Γ a

πr2l

r2 + l2

l2
Im

{
H 0,1

2 (r/ l, a/l, χ − χ0)

H 1,0
2 (a/l, r/l, χ − χ0)

}
− Γ a

πrl2
Im

{
H 1,1

1 (r/ l, a/l, χ − χ0)

H 1,1
1 (a/l, r/l, χ − χ0)

}
,

∂ur

∂a
=

Γ

πal

r2 + l2

l2
Im

{
H 0,1

2 (r/ l, a/l, χ − χ0)

H 1,0
2 (a/l, r/l, χ − χ0)

}
,

∂ur

∂χ
= −Γ a

πl2
Re

{
H 1,1

2 (r/ l, a/l, χ − χ0)

H 1,1
2 (a/l, r/l, χ − χ0)

}
,

∂ur

∂χ0

=
Γ a

πl2
Re

{
H 1,1

2 (r/ l, a/l, χ − χ0)

H 1,1
2 (a/l, r/l, χ − χ0)

}
,

∂uχ

∂r
= − Γ

πl2
+

Γ a

πrl2
r2 + l2

l2
Re

{
H 1,1

2 (r/ l, a/l, χ − χ0)

H 1,1
2 (a/l, r/l, χ − χ0)

}

− Γ a

πr2l

r2 − l2

l2
Re

{
H 0,1

1 (r/ l, a/l, χ − χ0)

H 1,0
1 (a/l, r/l, χ − χ0)

}
,
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∂uχ

∂a
=

Γ

πar

r2 + l2

l2
a2 + l2

l2
Re

{
H 0,0

2 (r/ l, a/l, χ − χ0)

H 0,0
2 (a/l, r/l, χ − χ0)

}
,

∂uχ

∂χ
= −Γ a

πrl

r2 + l2

l2
Im

{
H 0,1

2 (r/ l, a/l, χ − χ0)

H 1,0
2 (a/l, r/l, χ − χ0)

}
,

∂uχ

∂χ0

=
Γ a

πrl

r2 + l2

l2
Im

{
H 0,1

2 (r/ l, a/l, χ − χ0)

H 1,0
2 (a/l, r/l, χ − χ0)

}
.

The derivatives are obtained beyond the filament points by direct differentiation of
Hardin’s solution (Hardin 1982) employing recurrent relations between the modified
cylindrical functions (Abramovitz & Stegun 1964).

Appendix B. Asymptotic presentations of cylindrical functions
To complete the statement of § 3, we present here the asymptotic expansion of

modified cylindrical functions at high orders according to formulae (9.7.7)–(9.7.10)
from Abramovitz & Stegun (1964):

Im(mx) =
emη

√
t√

2πm

[
1 +

ϑ1

m
+

ϑ2

m2
+

ϑ3

m3
+

ϑ4

m4
. . .

]
,

I ′
m(mx) =

emη

x
√

2πmt

[
1 +

υ1

m
+

υ2

m2
+

υ3

m3
+

υ4

m4
. . .

]
,

Km(mx) =

√
πt

2m
e−mη

[
1 − ϑ1

m
+

ϑ2

m2
− ϑ3

m3
+

ϑ4

m4
. . .

]
,

K ′
m(mx) = −e−mη

√
π

x
√

2mt

[
1 − υ1

m
+

υ2

m2
− υ3

m3
+

υ4

m4
. . .

]
,

ϑ1 = (3t − 5t3)/24, υ1 = (−9t + 7t3)/24,

ϑ2 = (81t2 − 462t4 + 3856)/1152, υ2 = (−135t2 + 594t4 − 455t6)/1152,

ϑ3 = (30375t3 − 369603t5 + 765765t7 − 425425t9)/414720,

υ3 = (−42525t3 + 451737t5 − 883575t7 + 475475t9)/414720,

ϑ4 = (4465125t4 −94121676t6+349922430t8 −446185740t10+185910725t12)/39813120,

υ4 = (−5740875t4 + 111234708t6 − 396578754t8 + 493152660t10

− 202076875t12)/39813120,

where

η =
1

t
+ 1

2
ln

1 − t

1 + t
, t = (1 + x2)−1/2, x or y =

a

l
or

r

l
.

Note the form of coefficients αi,j , βi,j , γ i,j from (3.8), which are obtained as a result
of multiplication of the above written uniform expansions:

αi,j (x, y) = (1 − i)ϑ1(x) − (1 − j )ϑ1(y) + iυ1(x) − jυ1(y),

βi,j (x, y) = (1 − i)ϑ2(x) + (1 − j )ϑ2(y) + iυ2(x) + jυ2(y) − (1 − i)(1 − j )ϑ1(x)ϑ1(y)

− j (1 − i) ϑ1(x)υ1(y) − i(1 − j )ϑ1(y)υ1(x) − ijυ1(x)υ1(y),
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γ i,j (x, y) = (1 − i)ϑ3(x) − (1 − j )ϑ3(y) + iυ3(x) − jυ3(y) + (1 − i)(1 − j )[ϑ1(x)ϑ2(y)

− ϑ2(x)ϑ1(y)] + j (1 − i)[ϑ1(x)υ2(y) − ϑ2(x)υ1(y)] + i(1 − j )[ϑ2(y)υ1(x)

− ϑ1(y)υ2(x)] + ij [υ1(x)υ2(y) − υ2(x)υ1(y)].

Appendix C. Series development of poles, logarithms and polylogarithms
For convenience in reading the paper, we present here some expansions for the

elementary functions, which can be found in the readily available mathematical
reference books, such as Prudnikov, Brychkov & Marichev (1981, 1986).

exp(ξ+iχ )(
exp(ξ ) − exp(iχ )

)2
=

∞∑
m=1

m exp[−m(ξ − iχ)],

exp(iχ )

exp(ξ ) − exp(iχ )
=

∞∑
m=1

exp[−m(ξ − iχ )],

ln
(
1 − exp(−ξ+iχ )

)
=

∞∑
m=1

1

m
exp[−m(ξ − iχ )],

Li2
(
exp(−ξ+iχ )

)
=

∞∑
m=1

1

m2
exp[−m(ξ − iχ )],

Li3
(
exp(−ξ+iχ )

)
=

∞∑
m=1

1

m3
exp[−m(ξ − iχ )].

Appendix D. Sum of the poles, logarithms and polylogarithms, situated on the
circumference with identical displacement

Here are several sums of peculiarities and polylogarithms in the points, situated on
the circumference with identical displacement:

N−1∑
n=1

exp(i2πn/N )

[1 − exp(i2πn/N)]2
=

1 − N2

12
,

N−1∑
n=1

exp[i2πn(1 +m)/N ]

[1 − exp(i2πn/N)]2
=

1 − N2

12
− m(N − m)

2
,

N−1∑
n=1

exp(i2πn/N )

1 − exp(i2πn/N)
=

1 − N

2
,

N−1∑
n=1

exp[i2πn(1 + m)/N ]

1 − exp(i2πn/N)
=

1 − N

2
+ m,

N−1∑
n=1

ln

[
1 − exp

(
i
2πn

N

)]
= ln(N ),
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exp

(
i
2πnm

N

)
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[
1 − exp

(
i
2πn

N

)]
= ln(N ) + E + ψ

(
−m

N

)
− N

m
,

N−1∑
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Li2

(
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(
i
2πn

N
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π2

6

1 − N

N
,
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n=1

exp

(
i
2πnm

N

)
Li2

(
exp

(
i
2πn

N

))
=

1

N
ς

(
2,

m

N

)
− π2

6
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N∑
n=1
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i
2πn

N
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1

N
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i
2πnm
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(
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(
i
2πn
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1

N
ς
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m

N

)
,
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(
exp
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2πn
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N2
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exp
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i
2πnm
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Li3
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i
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N
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1

N2
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N
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− ς (3),
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exp
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i
2πn

N
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1

N2
ς (3),
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exp

(
i
2πnm

N
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Li3

(
exp

(
i
2πn

N
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1

N2
ς

(
3,

m

N

)
,

N−1∑
n=1

exp

(
i
2πnm

N

)
=

{
N − 1 if m = N,

−1 if m �= N.

The first four sums were used to study the problem of stability of polygonal arrays of
point vortices (Saffman 1992), the fifth and sixth sums can be found in, for example,
Prudnikov et al. (1981, 1986), while the sums with polylogarithms have been obtained
by the author independently.
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